

NAG C Library Function Document

nag_dtrevc (f08qkc)

1 Purpose

nag_dtrevc (f08qkc) computes selected left and/or right eigenvectors of a real upper quasi-triangular matrix.

2 Specification

```
void nag_dtrevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many,
    Boolean select[], Integer n, const double t[], Integer pdt, double vl[],
    Integer pdvl, double vr[], Integer pdvr, Integer mm, Integer *m,
    NagError *fail)
```

3 Description

nag_dtrevc (f08qkc) computes left and/or right eigenvectors of a real upper quasi-triangular matrix T in canonical Schur form. Such a matrix arises from the Schur factorization of a real general matrix, as computed by nag_dhseqr (f08pec), for example.

The right eigenvector x , and the left eigenvector y , corresponding to an eigenvalue λ , are defined by:

$$Tx = \lambda x \quad \text{and} \quad y^H T = \lambda y^H \quad (\text{or } T^T y = \bar{\lambda} y).$$

Note that even though T is real, λ , x and y may be complex. If x is an eigenvector corresponding to a complex eigenvalue λ , then the complex conjugate vector \bar{x} is the eigenvector corresponding to the complex conjugate eigenvalue $\bar{\lambda}$.

The function can compute the eigenvectors corresponding to selected eigenvalues, or it can compute all the eigenvectors. In the latter case the eigenvectors may optionally be pre-multiplied by an input matrix Q . Normally Q is an orthogonal matrix from the Schur factorization of a matrix A as $A = QTQ^T$; if x is a (left or right) eigenvector of T , then Qx is an eigenvector of A .

The eigenvectors are computed by forward or backward substitution. They are scaled so that, for a real eigenvector x , $\max(|x_i|) = 1$, and for a complex eigenvector, $\max(|\operatorname{Re}(x_i)| + |\operatorname{Im}(x_i)|) = 1$.

4 References

Golub G H and Van Loan C F (1996) *Matrix Computations* (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: **order** – Nag_OrderType *Input*

On entry: the **order** parameter specifies the two-dimensional storage scheme being used, i.e., row-major ordering or column-major ordering. C language defined storage is specified by **order = Nag_RowMajor**. See Section 2.2.1.4 of the Essential Introduction for a more detailed explanation of the use of this parameter.

Constraint: **order = Nag_RowMajor or Nag_ColMajor.**

2: **side** – Nag_SideType *Input*

On entry: indicates whether left and/or right eigenvectors are to be computed as follows:

if **side = Nag_RightSide**, only right eigenvectors are computed;

if **side = Nag_LeftSide**, only left eigenvectors are computed;

if **side** = **Nag_BothSides**, both left and right eigenvectors are computed.

Constraint: **side** = **Nag_RightSide**, **Nag_LeftSide** or **Nag_BothSides**.

3: **how_many** – **Nag_HowManyType** *Input*

On entry: indicates how many eigenvectors are to be computed as follows:

if **how_many** = **Nag_ComputeAll**, all eigenvectors (as specified by **side**) are computed;
 if **how_many** = **Nag_BackTransform**, all eigenvectors (as specified by **side**) are computed and then pre-multiplied by the matrix Q (which is overwritten);
 if **how_many** = **Nag_ComputeSelected**, selected eigenvectors (as specified by **side** and **select**) are computed.

Constraint: **how_many** = **Nag_ComputeAll**, **Nag_BackTransform** or **Nag_ComputeSelected**.

4: **select**[*dim*] – Boolean *Input/Output*

Note: the dimension, *dim*, of the array **select** must be at least $\max(1, \mathbf{n})$ when **how_many** = **Nag_ComputeSelected** and at least 1 otherwise.

On entry: **select** specifies which eigenvectors are to be computed if **how_many** = **Nag_ComputeSelected**. To obtain the real eigenvector corresponding to the real eigenvalue λ_j , **select**[*j*] must be set **TRUE**. To select the complex eigenvector corresponding to a complex conjugate pair of eigenvalues λ_j and λ_{j+1} , **select**[*j*] and/or **select**[*j* + 1] must be set **TRUE**; the eigenvector corresponding to the **first** eigenvalue in the pair is computed.

On exit: if a complex eigenvector was selected as specified above, then **select**[*j*] is set to **TRUE** and **select**[*j* + 1] to **FALSE**.

select is not referenced if **how_many** = **Nag_ComputeAll** or **Nag_BackTransform**.

5: **n** – Integer *Input*

On entry: *n*, the order of the matrix T .

Constraint: **n** ≥ 0 .

6: **t**[*dim*] – const double *Input*

Note: the dimension, *dim*, of the array **t** must be at least $\max(1, \mathbf{pdt} \times \mathbf{n})$.

If **order** = **Nag_ColMajor**, the (i, j) th element of the matrix T is stored in **t**[(*j* – 1) \times **pdt** + *i* – 1] and if **order** = **Nag_RowMajor**, the (i, j) th element of the matrix T is stored in **t**[(*i* – 1) \times **pdt** + *j* – 1].

On entry: the *n* by *n* upper quasi-triangular matrix T in canonical Schur form, as returned by nag_dhseqr (f08pec).

7: **pdt** – Integer *Input*

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **t**.

Constraint: **pdt** $\geq \max(1, \mathbf{n})$.

8: **vl**[*dim*] – double *Input/Output*

Note: the dimension, *dim*, of the array **vl** must be at least
 $\max(1, \mathbf{pdvl} \times \mathbf{mm})$ when **side** = **Nag_LeftSide** or **Nag_BothSides** and
order = **Nag_ColMajor**;
 $\max(1, \mathbf{pdvl} \times \mathbf{n})$ when **side** = **Nag_LeftSide** or **Nag_BothSides** and
order = **Nag_RowMajor**;
 1 when **side** = **Nag_RightSide**.

If **order** = **Nag_ColMajor**, the (i, j) th element of the matrix is stored in **vl**[(*j* – 1) \times **pdvl** + *i* – 1] and if **order** = **Nag_RowMajor**, the (i, j) th element of the matrix is stored in **vl**[(*i* – 1) \times **pdvl** + *j* – 1].

On entry: if **how_many** = **Nag_BackTransform** and **side** = **Nag_LeftSide** or **Nag_BothSides**, **vl** must contain an n by n matrix Q (usually the matrix of Schur vectors returned by nag_dhseqr (f08pec)). If **how_many** = **Nag_ComputeAll** or **Nag_ComputeSelected**, **vl** need not be set.

On exit: if **side** = **Nag_LeftSide** or **Nag_BothSides**, **vl** contains the computed left eigenvectors (as specified by **how_many** and **select**). The eigenvectors are stored consecutively in the rows or columns of the array, in the same order as their eigenvalues. Corresponding to each real eigenvalue is a real eigenvector, occupying one row or column. Corresponding to each complex conjugate pair of eigenvalues, is a complex eigenvector occupying two rows or columns; the first row or column holds the real part and the second row or column holds the imaginary part.

vl is not referenced if **side** = **Nag_RightSide**.

9: **pdvl** – Integer *Input*

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **vl**.

Constraints:

```
if order = Nag_ColMajor,
  if side = Nag_LeftSide or Nag_BothSides, pdvl  $\geq \max(1, n)$ ;
  if side = Nag_RightSide, pdvl  $\geq 1$ ;

if order = Nag_RowMajor,
  if side = Nag_LeftSide or Nag_BothSides, pdvl  $\geq \max(1, mm)$ ;
  if side = Nag_RightSide, pdvl  $\geq 1$ .
```

10: **vr**[*dim*] – double *Input/Output*

Note: the dimension, *dim*, of the array **vr** must be at least
 $\max(1, \text{pdvr} \times \text{mm})$ when **side** = **Nag_RightSide** or **Nag_BothSides** and
order = **Nag_ColMajor**;
 $\max(1, \text{pdvr} \times n)$ when **side** = **Nag_RightSide** or **Nag_BothSides** and
order = **Nag_RowMajor**;
1 when **side** = **Nag_LeftSide**.

If **order** = **Nag_ColMajor**, the (i, j) th element of the matrix is stored in **vr**[($j - 1$) \times **pdvr** + $i - 1$] and if **order** = **Nag_RowMajor**, the (i, j) th element of the matrix is stored in **vr**[($i - 1$) \times **pdvr** + $j - 1$].

On entry: if **how_many** = **Nag_BackTransform** and **side** = **Nag_RightSide** or **Nag_BothSides**, **vr** must contain an n by n matrix Q (usually the matrix of Schur vectors returned by nag_dhseqr (f08pec)). If **how_many** = **Nag_ComputeAll** or **Nag_ComputeSelected**, **vr** need not be set.

On exit: if **side** = **Nag_RightSide** or **Nag_BothSides**, **vr** contains the computed right eigenvectors (as specified by **how_many** and **select**). The eigenvectors are stored consecutively in the rows or columns of the array, in the same order as their eigenvalues. Corresponding to each real eigenvalue is a real eigenvector, occupying one row or column. Corresponding to each complex conjugate pair of eigenvalues, is a complex eigenvector occupying two rows or columns; the first row or column holds the real part and the second row or column holds the imaginary part.

vr is not referenced if **side** = **Nag_LeftSide**.

11: **pdvr** – Integer *Input*

On entry: the stride separating matrix row or column elements (depending on the value of **order**) in the array **vr**.

Constraints:

```
if order = Nag_ColMajor,
  if side = Nag_RightSide or Nag_BothSides, pdvr  $\geq \max(1, n)$ ;
  if side = Nag_LeftSide, pdvr  $\geq 1$ ;

if order = Nag_RowMajor,
  if side = Nag_RightSide or Nag_BothSides, pdvr  $\geq \max(1, mm)$ ;
```

if **side** = **Nag_LeftSide**, **pdvr** ≥ 1 .

12: **mm** – Integer *Input*

On entry: the number of rows or columns in the arrays **vl** and/or **vr**. The precise number of rows or columns required (depending on the value of **order**), *required_rowcol*, is n if **how_many** = **Nag_ComputeAll** or **Nag_BackTransform**; if **how_many** = **Nag_ComputeSelected**, *required_rowcol* is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector (see **select**), in which case $0 \leq \text{required_rowcol} \leq n$.

Constraint: **mm** $\geq \text{required_rowcol}$.

13: **m** – Integer * *Output*

On exit: *required_rowcol*, the number of rows or columns of **vl** and/or **vr** actually used to store the computed eigenvectors. If **how_many** = **Nag_ComputeAll** or **Nag_BackTransform**, **m** is set to n .

14: **fail** – **NagError** * *Output*

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, **n** = $\langle \text{value} \rangle$.

Constraint: **n** ≥ 0 .

On entry, **mm** = $\langle \text{value} \rangle$.

Constraint: **mm** $\geq \text{required_rowcol}$, where *required_rowcol* is obtained by counting 1 for each selected real eigenvector and 2 for each selected complex eigenvector.

On entry, **pdt** = $\langle \text{value} \rangle$.

Constraint: **pdt** > 0 .

On entry, **pdvl** = $\langle \text{value} \rangle$.

Constraint: **pdvl** > 0 .

On entry, **pdvr** = $\langle \text{value} \rangle$.

Constraint: **pdvr** > 0 .

NE_INT_2

On entry, **pdt** = $\langle \text{value} \rangle$, **n** = $\langle \text{value} \rangle$.

Constraint: **pdt** $\geq \max(1, \mathbf{n})$.

NE_ENUM_INT_2

On entry, **side** = $\langle \text{value} \rangle$, **n** = $\langle \text{value} \rangle$, **pdvl** = $\langle \text{value} \rangle$.

Constraint: if **side** = **Nag_LeftSide** or **Nag_BothSides**, **pdvl** $\geq \max(1, \mathbf{n})$;
if **side** = **Nag_RightSide**, **pdvl** ≥ 1 .

On entry, **side** = $\langle \text{value} \rangle$, **n** = $\langle \text{value} \rangle$, **pdvr** = $\langle \text{value} \rangle$.

Constraint: if **side** = **Nag_RightSide** or **Nag_BothSides**, **pdvr** $\geq \max(1, \mathbf{n})$;
if **side** = **Nag_LeftSide**, **pdvr** ≥ 1 .

On entry, **side** = $\langle \text{value} \rangle$, **mm** = $\langle \text{value} \rangle$, **pdvl** = $\langle \text{value} \rangle$.

Constraint: if **side** = **Nag_LeftSide** or **Nag_BothSides**, **pdvl** $\geq \max(1, \mathbf{mm})$;
if **side** = **Nag_RightSide**, **pdvl** ≥ 1 .

On entry, **side** = $\langle \text{value} \rangle$, **mm** = $\langle \text{value} \rangle$, **pdvr** = $\langle \text{value} \rangle$.

Constraint: if **side** = **Nag_RightSide** or **Nag_BothSides**, **pdvr** $\geq \max(1, \mathbf{mm})$;
if **side** = **Nag_LeftSide**, **pdvr** ≥ 1 .

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter $\langle value \rangle$ had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

7 Accuracy

If x_i is an exact right eigenvector, and \tilde{x}_i is the corresponding computed eigenvector, then the angle $\theta(\tilde{x}_i, x_i)$ between them is bounded as follows:

$$\theta(\tilde{x}_i, x_i) \leq \frac{c(n)\epsilon\|T\|_2}{sep_i}$$

where sep_i is the reciprocal condition number of x_i .

The condition number sep_i may be computed by calling nag_dtrsna (f08qlc).

8 Further Comments

For a description of canonical Schur form, see the document for nag_dhseqr (f08pec).

The complex analogue of this function is nag_ztrevc (f08qxc).

9 Example

See Section 9 of the document for nag_dgebal (f08nhc).
