f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qke

NAG C Library Function Document
nag_dtreve (f08qkc)

1 Purpose

nag_dtreve (f08qkc) computes selected left and/or right eigenvectors of a real upper quasi-triangular
matrix.

2 Specification

void nag_dtrevc (Nag_OrderType order, Nag_SideType side, Nag_HowManyType how_many,
Boolean select[], Integer n, const double t[], Integer pdt, double vI[],
Integer pdvl, double vr[], Integer pdvr, Integer mm, Integer *m,
NagError *fail)

3 Description

nag_dtreve (f08qkc) computes left and/or right eigenvectors of a real upper quasi-triangular matrix 7' in
canonical Schur form. Such a matrix arises from the Schur factorization of a real general matrix, as
computed by nag dhseqr (fO8pec), for example.

The right eigenvector z, and the left eigenvector y, corresponding to an eigenvalue A, are defined by:
Tr=Xx and y'T =M\ (or TTy = \y).

Note that even though T is real, A, x and y may be complex. If x is an eigenvector corresponding to a
complex eigenvalue A, then the complex conjugate vector Z is the eigenvector corresponding to the
complex conjugate eigenvalue A.

The function can compute the eigenvectors corresponding to selected eigenvalues, or it can compute all the
eigenvectors. In the latter case the eigenvectors may optionally be pre-multiplied by an input matrix Q.

Normally @ is an orthogonal matrix from the Schur factorization of a matrix A as A = QTQ"; if z is a
(left or right) eigenvector of T, then Qx is an eigenvector of A.

The eigenvectors are computed by forward or backward substitution. They are scaled so that, for a real
eigenvector z, max(|x;|) = 1, and for a complex eigenvector, max(| Re(z;)| + |Im(z;)|) = 1.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side — Nag SideType Input
On entry: indicates whether left and/or right eigenvectors are to be computed as follows:
if side = Nag_RightSide, only right eigenvectors are computed;

if side = Nag_LeftSide, only left eigenvectors are computed,

[NP3645/7] 108qke. 1



f08qkec NAG C Library Manual

if side = Nag BothSides, both left and right eigenvectors are computed.
Constraint: side = Nag_RightSide, Nag_LeftSide or Nag_BothSides.

3: how_many — Nag HowManyType Input
On entry: indicates how many eigenvectors are to be computed as follows:
if how_many = Nag_ComputeAll, all eigenvectors (as specified by side) are computed,;

if how_many = Nag BackTransform, all eigenvectors (as specified by side) are computed
and then pre-multiplied by the matrix () (which is overwritten);

if how_many = Nag_ComputeSelected, sclected eigenvectors (as specified by side and
select) are computed.

Constraint: how_many = Nag_ComputeAll, Nag_BackTransform or Nag_ComputeSelected.

4: select[dim]| — Boolean Input/Output

Note: the dimension, dim, of the array select must be at least max(1,n) when
how_many = Nag_ComputeSelected and at least 1 otherwise.

On  entry: select specifies  which  eigenvectors are to be computed if
how_many = Nag_ComputeSelected. To obtain the real eigenvector corresponding to the real
eigenvalue \;, select[j] must be set TRUE. To select the complex eigenvector corresponding to a
complex conjugate pair of eigenvalues \; and ), , select[j] and/or select[j 4- 1] must be set TRUE;
the eigenvector corresponding to the first eigenvalue in the pair is computed.

On exit: if a complex eigenvector was selected as specified above, then select[j] is set to TRUE and
select[j + 1] to FALSE.

select is not referenced if how_many = Nag_ComputeAll or Nag_BackTransform.

5: n — Integer Input
On entry: n, the order of the matrix 7.

Constraint: n > 0.

6: t[dim] — const double Input
Note: the dimension, dim, of the array t must be at least max(1, pdt X n).

If order = Nag_ColMajor, the (7, j)th element of the matrix T is stored in t[(j — 1) x pdt + ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix T is stored in t[(i — 1) x pdt + j — 1].

On entry: the n by n upper quasi-triangular matrix 7" in canonical Schur form, as returned by
nag_dhseqr (f08pec).
7: pdt — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array t.

Constraint: pdt > max(1,n).

8: vl[dim| — double Input/Output

Note: the dimension, dim, of the array vl must be at least

max(1, pdvl x mm) when side = Nag_LeftSide or Nag BothSides and
order = Nag_ColMajor;

max (1, pdvl X n) when side = Nag_LeftSide or Nag_BothSides and
order = Nag_RowMajor;

1 when side = Nag_RightSide.

If order = Nag_ColMajor, the (i, j)th element of the matrix is stored in vI[(j — 1) X pdvl + ¢ — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix is stored in vI[(i — 1) x pdvl + j — 1].

f08qke.2 [NP3645/7]



f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qke

On entry: if how_many = Nag BackTransform and side = Nag LeftSide or Nag BothSides, vl
must contain an n by n matrix ) (usually the matrix of Schur vectors returned by nag dhseqr
(f08pec)). If how_many = Nag_ComputeAll or Nag_ComputeSelected, vl need not be set.

On exit: if side = Nag_LeftSide or Nag_BothSides, vl contains the computed left eigenvectors (as
specified by how_many and select). The eigenvectors are stored consecutively in the rows or
columns of the array, in the same order as their eigenvalues. Corresponding to each real eigenvalue
is a real eigenvector, occupying one row or column. Corresponding to each complex conjugate pair
of eigenvalues, is a complex eigenvector occupying two rows or columns; the first row or column
holds the real part and the second row or column holds the imaginary part.

vl is not referenced if side = Nag_RightSide.

9: pdvl — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vl
Constraints:

if order = Nag_ColMajor,
if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1,n);
if side = Nag_RightSide, pdvl > 1;

if order = Nag_RowMajor,
if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1, mm);
if side = Nag_RightSide, pdvl > 1.

10:  vr[dim] — double Input/Output

Note: the dimension, dim, of the array vr must be at least
max(1, pdvr X mm) when side = Nag_RightSide or  Nag BothSides and
order = Nag_ColMajor;
max(1, pdvr X n) when side = Nag_RightSide or Nag_BothSides and
order = Nag_RowMajor;

1 when side = Nag_LeftSide.

If order = Nag_ColMajor, the (¢, j)th element of the matrix is stored in vr[(j — 1) x pdvr 4+ i — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix is stored in vr[(i — 1) x pdvr + j — 1].

On entry: if how_many = Nag BackTransform and side = Nag_RightSide or Nag_BothSides, vr
must contain an n by n matrix ) (usually the matrix of Schur vectors returned by nag dhseqr
(f08pec)). If how_many = Nag_ComputeAll or Nag_ComputeSelected, vr need not be set.

On exit: if side = Nag_RightSide or Nag_BothSides, vr contains the computed right eigenvectors
(as specified by how_many and select). The eigenvectors are stored consecutively in the rows or
columns of the array, in the same order as their eigenvalues. Corresponding to each real eigenvalue
is a real eigenvector, occupying one row or column. Corresponding to each complex conjugate pair
of eigenvalues, is a complex eigenvector occupying two rows or columns; the first row or column
holds the real part and the second row or column holds the imaginary part.

vr is not referenced if side = Nag_LeftSide.

11:  pdvr — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array vr.

Constraints:

if order = Nag_ColMajor,
if side = Nag_RightSide or Nag_BothSides, pdvr > max(1,n);
if side = Nag_LeftSide, pdvr > 1;

if order = Nag_RowMajor,
if side = Nag_RightSide or Nag_BothSides, pdvr > max(1, mm);

[NP3645/7] 108qke.3



f08qkec NAG C Library Manual

12:

13:

14:

6

if side = Nag_LeftSide, pdvr > 1.

mm — Integer Input

On entry: the number of rows or columns in the arrays vl and/or vr. The precise number of rows or
columns required (depending on the value of order), required_rowcol, is n if how_many =
Nag_ComputeAll or Nag_BackTransform; if  how_many = Nag_ComputeSelected,
required_rowcol is obtained by counting 1 for each selected real eigenvector and 2 for each
selected complex eigenvector (see select), in which case 0 < required_rowcol < n.

Constraint: mm > required_rowcol.
m — Integer * Output

On exit: required_rowcol, the number of rows or columns of vl and/or vr actually used to store the
computed eigenvectors. If how_many = Nag_ComputeAll or Nag_BackTransform, m is set to n.

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, mm = (value).
Constraint: mm > required_rowcol, where required_rowcol is obtained by counting 1 for each
selected real eigenvector and 2 for each selected complex eigenvector.

On entry, pdt = (value).
Constraint: pdt > 0.

On entry, pdvl = (value).
Constraint: pdvl > 0.

On entry, pdvr = (value).
Constraint: pdvr > 0.

NE_INT 2

On entry, pdt = (value), n = (value).
Constraint: pdt > max(1,n).

NE_ENUM_INT 2

On entry, side = (value), n = (value), pdvl = (value).
Constraint: if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1,n);
if side = Nag_RightSide, pdvl > 1.

On entry, side = (value), n = (value), pdvr = (value).
Constraint: if side = Nag_RightSide or Nag_BothSides, pdvr > max(1,n);
if side = Nag_LeftSide, pdvr > 1.

On entry, side = (value), mm = (value), pdvl = (value).
Constraint: if side = Nag_LeftSide or Nag_BothSides, pdvl > max(1, mm);
if side = Nag_RightSide, pdvl > 1.

On entry, side = (value), mm = (value), pdvr = (value).
Constraint: if side = Nag_RightSide or Nag_BothSides, pdvr > max(1, mm);
if side = Nag_LeftSide, pdvr > 1.

108qkc.4 [NP3645/7]



f08 — Least-squares and Eigenvalue Problems (LAPACK) f08qke

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7  Accuracy

If z; is an exact right eigenvector, and Z; is the corresponding computed eigenvector, then the angle
0(%;, x;) between them is bounded as follows:

c(n)el T,

SEP;

9(1‘@7 xi) S

where sep; is the reciprocal condition number of x;.

The condition number sep;, may be computed by calling nag_dtrsna (f08qlc).

8 Further Comments

For a description of canonical Schur form, see the document for nag dhseqr (f08pec).

The complex analogue of this function is nag_ztrevc (f08qgxc).

9 Example
See Section 9 of the document for nag_dgebal (f08nhc).

[NP3645/7] f08qke.5 (last)



	f08qkc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	how_many
	select
	n
	t
	pdt
	vl
	pdvl
	vr
	pdvr
	mm
	m
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction



